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Abstract 
The prediction of burden rock velocity is crucial in 

optimizing the efficiency of mining and excavation 

operations. This study presents a novel approach 

utilizing Artificial Neural Networks (ANNs) to 

accurately predict the velocity of burden rocks based 

on various input parameters such as rock property, 

geological property and bench properties. A 

comprehensive dataset was collected from field 

measurements and laboratory experiments to train the 

ANN models. The performance of the ANN models such 

as Multi-layered Perceptron (MLP), Deep Neural 

Network (DNN), simple MLP and Backpropagation 

Neural Network (BPNN) was evaluated based on 

performance metrics R-squared (R)2, Mean Squared 

Error (MSE) and Mean Absolute Error (MAE). Among 

the developed ANN models, the BPNN model was found 

to be the most accurate predictive model for burden 

rock velocity, as evidenced by metrics R2(0.821), MSE 

(0.099) and MAE (0.226).  

 

The results indicate that the BPNN model effectively 

captures the complex relationships between the 

predictors and burden rock velocity. Advanced neural 

network algorithms such as recurrent neural networks 

and long short-term memory techniques can be used to 

improve the accuracy of presented neural network 

models. 
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Introduction 
In the mining and excavation sector, the efficiency and safety 

of blasting operations are profoundly influenced by the 

movement dynamics of burden rocks7,19. The velocity of 

these rocks plays a pivotal role in determining material 

handling strategies, optimizing blast designs and enhancing 

overall productivity20. Accurate prediction of burden rock 

velocity is critical as it enables more effective resource 

management, streamlined workflows and a significant 

reduction in operational costs8.  

 

Furthermore, precise predictions contribute to minimizing 

environmental impacts by ensuring better control over 

blasting outcomes, reducing the likelihood of overburden 

displacement and mitigating ecological disturbances6. 

Traditional methods for estimating burden rock velocity 

typically rely on empirical formulas and observational data. 

While these approaches provide a general understanding, 

they often fall short of capturing the intricate and nonlinear 

interactions among geological, operational and 

environmental factors3,9. The increasing complexity of 

modern mining operations demands advanced predictive 

techniques that can account for these multidimensional 

influences. This has fueled a growing interest in utilizing 

technological advancements, particularly artificial 

intelligence-based predictive modeling, to improve 

predictive accuracy and operational decision-making 11. 

 

Artificial Neural Networks (ANNs) have emerged as a 

promising alternative to conventional methods. Unlike 

traditional techniques, ANNs excel at modeling complex, 

nonlinear relationships and can effectively learn patterns 

from extensive datasets 16. By integrating diverse input 

variables such as rock type, density, environmental 

conditions, blasting parameters and historical performance 

data, ANNs provide a holistic and data-driven approach in 

understanding the factors influencing burden rock velocity. 

This ability to analyze multifaceted interactions makes 

ANNs invaluable tools for addressing the challenges of 

modern mining operations, offering deeper insights and 

more reliable predictions 17. 

 

This study focuses on developing and validating ANN-based 

models such as Deep MLP, DNN, simple MLP and BPNN 

using input parameters such as rock, geological and bench 

properties. The novelty of this study lies in the 

comprehensive exploration of ANN architectures tailored 

specifically for predicting burden rock velocity, 

incorporating a diverse range of geological and operational 

parameters.  

 

Review of Literature  
Accurate predictions of burden rock velocity are crucial for 

improving operational efficiency in mining and geotechnical 

engineering. Various predictive artificial neural network 

(ANN) techniques have been explored in the literature, each 

with unique advantages and applications. Recent studies 

have employed ANNs for predicting outcomes such as rock 

fragmentation, peak particle velocity and fly rock in mining 

operations, demonstrating their versatility and 

effectiveness4,15,17. 

 

Backpropagation Neural Network (BPNN) is an artificial 

neural network that utilizes a supervised learning algorithm 

to model complex relationships within the data. They are 
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widely employed in various fields including engineering, 

finance and medicine, due to their ability to learn from 

examples and make accurate predictions based on input data. 

The BPNN architecture consists of multiple layers of 

interconnected nodes (neurons), typically organized into 

three main layers: an input layer, one or more hidden layers 

and an output layer. BPNNs have been used in mining to 

optimize blasting operations and predict rock behavior14. 

 

MLPs are feedforward neural networks consisting of an 

input layer, one or more hidden layers and an output layer. 

They can model non-linear relationships and are widely used 

for regression tasks. However, MLPs may require large 

datasets and computational power for effective training. 

They are typically trained using the backpropagation 

algorithm. A few studies utilized MLPs to predict rock 

fragmentation and to assess blast-induced forces' impacts1,2. 

 

 DNNs extend MLPs by adding more hidden layers, 

allowing the model to capture complex hierarchical patterns. 

While they can provide higher accuracy for complex tasks, 

they are prone to overfitting and require careful 

regularization and optimization techniques. DNNs have 

paved the way for a good approach in predicting burden rock 

velocity to optimize rock blasting operations. One such 

study by Zang19 includes developing DNNs to model 

complex relationships between blast hole diameter, 

explosive charge rock properties and burden rock velocity, 

leading to more accurate predictions than traditional 

empirical methods. 

 

Simple MLPs have fewer hidden layers than typical MLPs, 

making them more efficient in terms of computation. These 

networks are suitable for simpler regression tasks and 

smaller datasets, balancing performance and training 

efficiency well. They are particularly effective in scenarios 

where computational resources are limited such as small-

scale mining projects12. 

 

Case study: Field investigations were conducted at three 

limestone mines designated mine A, mine B and mine C to 

collect the samples and relevant data. The spatial distribution 

of these mines, located in Telangana and Andhra Pradesh 

districts, is depicted in the satellite imagery presented in 

figure 1. The bench heights across the study sites varied 

between 6 -10 m. The exposed limestone formations 

predominantly exhibited grey to off-white coloration and 

were characterized by a fine-grained texture. The deposits 

displayed distinct bedding features with variable thickness 

and were observed to be significantly fractured, indicating 

structural discontinuities.  

 

 
Figure 1: An aerial satellite image view of the location of all three limestone mines. 
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In the blasting operation of the mine, a total of 166 blasts 

were conducted using the benching method in all three 

mines, with bench heights ranging from 6-10 m. Drilling and 

blasting techniques involve 115 mm diameter blast holes 

drilled at a 15° inclination. Blastholes, 6.5-10m deep, are 

charged with ANFO mixed with husk to reduce charge 

concentration, using 'Ideal Boost' as a primer and Excel 

Dueldet shock tube detonators for precise initiation. The 

remaining 2 -2.75 m of the blastholes stem from inert drill 

cuttings before interconnection and blast preparation. 

Highspeed videography captures rock breakage and 

movement during blasting, which occurs too rapidly to be 

observed by the naked eye. 

 

The recorded videos are analyzed using Proanalyst software 

to measure burden rock movement to calculate its velocity 

based on the time taken by rock particles to travel specific 

distances. Calibration is performed using a known reference, 

such as burden distance or bench height. Among the 

measured velocities at the top, center and toe, the center 

velocity is consistently highest, serving as the most 

representative indicator of blast effectiveness. 

 

Material and Methods 
This study applies machine learning approaches to predict 

burden rock velocity using neural network architectures. 

Four distinct neural network models were developed and 

evaluated: Deep Multi-Layer Perceptron (Deep MLP), Deep 

Neural Network (DNN), Simple Multi-Layer Perceptron 

(Simple MLP) and Backpropagation Neural Network 

(BPNN). In the present study, a schematic of the general 

architecture of the neural network and back propagation 

neural network models is shown in figure 2 and figure 3. The 

seven key input features were identified as critical for model 

training: Blast Hole Diameter (BH), Charge per Delay 

(CPD), Total Explosive Consumption (TEC), Stiffness Ratio 

(K), Powder Factor (PF), Joint Spacing (JS) and Point Load 

Index (PL). The input features and their respective ranges are 

provided in table 1 while table 2 outlines the range of output 

parameters considered for analysis. 

 

Table 1 

Input parameters for the network along with their respective ranges 

S.N. Input Parameters Range 

1 Bench height (BH) 6.5-11 m 

2 Charge per Delay (CPD)  30.7-89.4 kg 

3 Total Explosive Charge (TEC) 649.5-2808.9 kg 

4 Stiffness Ratio (K) 2.9-5.1 

5 Powder Factor (PF)  3.5-8.5 t/kg 

6 Joint Spacing (JS)  12-23 cm 

7 Point Load Index (PL) 2.5-5.5 MPa 

 

 
Figure 2: The general architecture of neural networks consists of an input, hidden and output layer. 
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Figure 3: The general architecture of a backpropagation neural network, x is the input values, H is the hidden nodes 

and ŷᵢ are the predicted values against the actual values y. 

 

Table 2 

Output parameters for the network along with their respective ranges 

S.N. Output Parameters Range 

1 Burden Rock Velocity (BRV) 6.75-11.73 m/s 

 

Data Preprocessing: Data preprocessing is one of the 

crucial steps before predictive modeling. It involves feature 

selection and systematic data preparation to ensure robust 

model performance. The dataset is processed for the 

following preprocessing steps: 

 

1. Data normalization: Features were normalized to 

ensure uniform scaling, reducing bias during training. 

2. Train-test split: The dataset was divided into training 

and testing subsets, with 80% allocated for training and 

20% for testing. This split ensures sufficient data for 

model training while preserving data for unbiased 

evaluation. 

 
Neural network architectures: The study explores four 

distinct neural network architectures, each designed to 

capture varying levels of data complexity. These 

architectures were implemented using a sequential model 

approach, with differing numbers of hidden layers and 

neurons. Table 4 summarizes the proposed neural network 

models with their architectures. Every neural network 

architecture differs based on hidden layers, activation 

functions and optimizers used for neural network models. 

Activation functions play an important role in defining the 

architecture of the model. Some of them are discussed as 

follows:  

 

The Rectified Linear Unit (ReLU) is considered one of the 

most effective activation functions in deep learning due to 

its simplicity and computational efficiency. ReLU outputs 

zero for negative inputs and passes positive inputs 

unchanged, introducing non-linearity without excessive 

computational overhead. Unlike sigmoid or tanh functions, 

ReLU mitigates the vanishing gradient problem, enabling 

faster training and better performance in deep networks10. 

Additionally, the sparsity introduced by ReLU activates only 

a subset of neurons, improving model efficiency and 

reducing the risk of overfitting.  

 

The Adam optimizer (Adaptive Moment Estimation) is a 

widely used optimization algorithm that combines the 

advantages of momentum-based methods and adaptive 

learning rates. It calculates parameter-specific learning rates 

using the first and second moments of gradients, making it 

robust to noisy data, effective for large-scale problems13. 

Adam is known for its fast convergence and minimal need 

for hyperparameter tuning, making it a default choice in 

many deep learning tasks, especially where gradients are 

sparse, or objectives are non-stationary.  

 

On the other hand, Stochastic Gradient Descent (SGD) 

updates model parameters using small batches or individual 

data samples, introducing randomness that allows the 

optimizer to escape local minima and to explore the solution 

space more effectively. Although SGD converges more 

slowly than adaptive methods like Adam, it often generalizes 

better for tasks such as image classification when paired with 

techniques like momentum or learning rate scheduling5. 

Both Adam and SGD are foundational optimization 

algorithms, each with distinct strengths that make them 

suitable for different applications in machine learning. 
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Table 4  

Summary of neural network architectures for various models against various hyperparameters. 

Model Hidden 

Layers 

Neurons 

Per Layer 

Activation 

Function 

Optimizer Loss Function 

Deep Multi-Layer Perceptron  

(Deep MLP) 

4 128, 64, 

32, 16 

ReLU Adam Mean Squared 

Error 

Deep Neural Network (DNN) 3 128, 64, 

32 

ReLU Adam Mean Squared 

Error 

Simple Multi-Layer 

Perceptron  

(Simple MLP) 

2 64, 32 ReLU Adam Mean Squared 

Error 

Backpropagation Neural 

Network (BPNN) 

2 64, 32 ReLU SGD Mean Squared 

Error 

 

Training Parameters: To ensure a fair comparison, all 

models were trained using consistent parameters: Epochs 50 

and Batch size 16. These parameters were selected to 

balance model learning and overfitting prevention. 

 

Performance Evaluation Metrics: Model performance was 

comprehensively assessed using three key evaluation 

metrics: In all the equations, n is the number of data points, 

yᵢ is the ith actual value for the ith data point and ŷᵢ is the 

predicted value. 

 

Mean Squared Error (MSE): MSE measures the average 

squared difference between predicted and actual values. 

Lower MSE values indicate better model performance. The 

formula for MSE is given by eq. 1: 

 

MSE = (1/n) Σ (yᵢ - ŷᵢ)²                                                         (1) 

 

R-squared (Coefficient of Determination): R-squared 

evaluates the proportion of variance in the dependent 

variable explained by the model. It is calculated using eq. 2:| 

 

R² = 1 - [Σ (yᵢ - ŷᵢ)²/ Σ (yᵢ - ȳ)²]                                         (2) 

 

R-squared offers insight into the proportion of variance in 

the dependent variable that is predictable from the 

independent variables. It ranges from 0 to 1 with values 

closer to 1 indicating a better fit: 

 

Mean Absolute Error (MAE): Mean absolute error (MAE) 

calculates the average absolute difference between predicted 

and actual values, providing a straightforward measure of 

prediction accuracy:  It is expressed in eq. 3: 

 

MAE = (1/n) Σ |yᵢ - ŷᵢ|                                                       (3) 

 

These metrics collectively provide a comprehensive 

assessment of model performance, enabling a nuanced 

comparison of the different neural network architectures. 

 

Results and Discussion 
The evaluation results are summarized in table 5 showing the 

performance of each model across the defined metrics. The 

results highlight the performance variability across the tested 

neural network models. The Backpropagation Neural 

Network (BPNN) emerged as the best-performing model, 

achieving the highest R2 value of 0.821, the lowest MSE of 

0.0995 and the lowest MAE of 0.2268. These results indicate 

that the BPNN effectively captured the underlying 

relationships in the dataset, demonstrating its suitability for 

this problem. The robust optimization technique (Stochastic 

Gradient Descent) and the relatively simpler architecture 

contributed to its strong generalization ability. 

 

In contrast, the Simple Multi-Layer Perceptron (Simple 

MLP) performed poorly, with a negative R2 value (-0.689). 

A negative R2 indicates that the model's predictions were less 

accurate than using the mean of the target variable as a 

prediction. This suggests that the simple MLP suffered from 

underfitting, possibly due to its limited architecture with 

only two hidden layers, which may have been insufficient to 

capture the complexity of the data.  

 

The Deep Neural Network (DNN) also delivered suboptimal 

results, with an R2 of 0.599, an MSE of 0.222 and an MAE 

of 0.386. While better than the simple MLP, the DNN may 

have overfitted the training data due to its more complex 

architecture, reducing the ability to generalize to the test 

data. The Deep Multi-Layer Perceptron (Deep MLP) showed 

moderate performance with an R2 of 0.742. Its relatively 

higher MSE (0.1437) and MAE (0.3089) suggest that while 

the model captured the data’s complexity to some extent, it 

may have been prone to slight overfitting or struggled with 

optimization challenges. 

 

Conclusion 
The paradigm of predictive modeling of burden rock 

velocity in limestone mines helps to design blasts that 

achieve the desired fragmentation and enhance safer blasting 

operations by minimizing the risk of fly rock and excessive 

vibrations. Hence, a study was formulated to predict burden 

rock velocity using input parameters such as BH, CPD, TEC, 

SR, PF, JS and PL. The performance of the predictive models 

was evaluated based on the R-squared (R²) score and other 

relevant metrics. Among the models tested, the 

backpropagation neural network model demonstrated the 

highest R² score, indicating a strong relationship between the 

predicted and actual values of burden rock velocity. 



     Disaster Advances                                                                                                                            Vol. 18 (5) May (2025) 

https://doi.org/10.25303/185da1330138      138 

Table 5  

Comparison of predictive models based on MSE, R² and MAE. 

S.N. NN Model R² MSE MAE 

1 Deep Multi-Layer Perceptron (MLP) 0.742 0.143 0.308 

2 Deep Neural Network (DNN) 0.599 0.222 0.386 

3 Simple Multi-Layer Perceptron (MLP) -0.689 0.940 0.817 

4 Backpropagation Neural Network (BPNN) 0.821 0.099 0.226 

 

The R² score for the backpropagation neural network model 

was calculated to be R2 = 0.82, suggesting that 82% of the 

variance in the burden rock velocity can be explained by the 

model. This high R² value correlates with improved 

prediction accuracy, as evidenced by a lower mean square 

error (MSE) of MSE = 0.099 and mean absolute error of 

MAE = 0.226. The accuracy of the prediction models can be 

enhanced by using more advanced hybrid models or stacked 

models by incorporating neural networks and ensemble 

methods. 
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